DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation
نویسندگان
چکیده
Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New methods are being published for analyzing CyTOF data attempt to improve automation, scalability, performance, and interpretation of data generated in large studies. However, most current tools are less suitable for routine use where analysis must be standardized, reproducible, interpretable, and comparable. Assigning individual cells into discrete groups of cell types (gating) involves time-consuming sequential manual steps untenable for larger studies. The subjectivity of manual gating introduces variability into the data and impacts reproducibility and comparability of results, particularly in multi-center studies. The FlowCAP consortium aims to boost user confidence in the viability of automated gating methods. We introduce DeepCyTOF, a standardization approach for gating based on a multi-autoencoder neural network. DeepCyTOF requires labeled cells from only a single sample. It is based on domain adaptation principles and is a generalization of previous work to more than two samples. We apply DeepCyTOF to two CyTOF datasets generated from primary immune blood cells: (i) 14 subjects with a history of infection with West Nile virus (WNV), and (ii) 34 healthy subjects of different ages. Each blood sample was labeled with 42 antibody markers at baseline and three different stimuli (PMA/ionomycin, tumor cell line K562, and infection with WNV). In each of these datasets we manually gated a single baseline reference sample to automatically gate the remaining uncalibrated samples. We show that DeepCyTOF cell classification is highly concordant with cell classification obtained by individual manual gating of each sample with over 99% concordance. Additionally, we apply a stacked autoencoder, which is one of the building blocks of DeepCyTOF, to cytometry datasets used in the 4th challenge of the FlowCAP-I competition and demonstrate that it over performs relative to all gating methods introduced in this competition. We conclude that stacked autoencoders combined with a domain adaptation procedure offers a powerful computational approach for semi-automated gating of CyTOF and flow cytometry data such that manual gating of one reference sample is sufficient for accurately gating the remaining samples. ∗The first two authors contributed equally to this work. †To whom correspondence should be addressed. Tel: 203-737-6262; Email: [email protected] 1 not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/054411 doi: bioRxiv preprint first posted online May. 20, 2016;
منابع مشابه
Gating mass cytometry data by deep learning
Motivation Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New methods for analyzing CyTOF data attempt to improve automation, scalability, performance and interpretation of data generated in large studies. Assigning individual cells into discrete groups of cell types...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016